
Automatic Multilevel Parallelization Using OpenMP**

Haoqiang Jim Gabriele Jost , Jerry Yah
NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA

{hi in, gj ost, yan} @nas .nasa. gov

Eduard Ayguade, Marc Gonzalez, Xavier Martorell

Centre Europeu de Parallelism de Barcelona, Computer Architecture Department (UPC)

cr. A,rdi Girona i-3, Modul D6,08034 - Barcelona, Spain
{eduard,marc, xavier} @ac .upc. es

Abstract

In this paper we describe lhe extension of tile

CAPO parallelization support tool to support multi-
level parallelism based on i)penMP directives.

CAPO generates OpenMP directives with extensions
supported by the NanosCompiler to allow for direc-

tive nesting and definition of thread groups. We
report some results for several benchmark codes and
one fidl application that have be ;n parallelized using

our system.

1 Introduction

Parallel architectures are an nstrumental tool for

the execution of computational intensive applica-
tions. Simple and powerful programming models and
environments are required to develop and tune such

parallel applications. Current programming models
offer either library-based implementations (such as
MPI [16]) or extensions to sequential languages (di-

rectives and language constructs) that express the
available parallelism in the _pplication, such as
Open/_lP [201.

OpenMP was introduced as an industrial standard

for shared-memory programming with directives.
Recently, it has gained significant popularity and

wide compiler support. However, relevant perform-
ance issues must still be addressed which concern

programming model design as well as implementa-
tion. In addition to that, extensions to the standard

are being proposed and evaluated in order to widen
the applicability of OpenMP to a broad class of par-

allel applications without sacrificing portability and
simplicity.

What has not been clearly addressed in OpenMP
is the exploitation of multiple levels parallelism. The

lack of compilers that are able t_ exploit further par-
allelism inside a parallel regior_ has been the main

cause of this problem, which has favored the practice
of combining several programming models to ad-

dress scalability of applicatiom to exploit multiple
levels of parallelism on a large namber of processors.

The nesting of parallel constructs in OpenMP is a

* The author is an employee of Corn)rater Sciences Corpora-
tion.

** A Preliminary version of this papel was presented at the 3 _d

European Workshop on OpemMP (EWOMPOI)

feature that requires attention in future releases of

OpenMP compilers. Some research platforms, such
as the OpenMP NanosCompiler [9], have been de-

veloped to show the feasibility of exploiting nested
parallelism in OpenMP and to serve as testbeds for

new extensions in this direction. The OpenMP
NanosCompiler accepts Fortran-77 code containing

OpenMP directives and generates plain Fortran-77

code with calls to the NthLib thread library [17] (cur-
rently implemented for the SGI Origin). In contrast
to the SGI MP library, NthLib allows for multilevel

parallel execution such that inner parallel constructs
are not being serialized. The NanosCompiler pro-

gramming model supports several extensions to the
OpenMP standard to allow the user to control the
allocation of work to the participating threads. By

supporting nested OpenMP directives the
NanosCompiler offers a convenient way to multi-

level parallelism.

In this study, we have extended the automatic

parallelization tool, CAPO, to allow for the genera-
tion of nested OpenMP parallel constructs in order to

support multilevel shared memory parallelisation.
CAPO automates the insertion of OpenMP directives
with nominal user interaction to facilitate parallel

processing on shared memory parallel machines. It is
based on CAPTools [11], a semi-automatic paralleli-

sation tool for the generation of message passing
codes, developed at the University of Greenwich.

To this point there is little reported experience
with shared memory multilevel parallelism. By being
able to generate nested directives automatically in a

reasonable amount of time we hope to be able to gain
a better understanding of performance issues and the

needs of application programs when in comes to ex-
ploiting multilevel parallelism.

The paper is organized as follows: Section 2
summarizes the NanosCompiler extensions to the
OpenMP standard. Section 3 discusses the extension

of CAPO to generate multilevel parallel codes. Sec-
tion 4 presents case studies on several benchmark

codes and one full application.

2 The NanosCompiler

OpenMP provides a fork-and-join execution
model in which a program begins execution as a sin-

gle process or thread. This thread executes

sequentiallyuntila PARALLEL construct is found.
At this time, the thread creates a team of threads and
it becomes its master thread. All threads execute the

statements lexically enclosed by the parallel con-

struct. Work-sharing constructs (-_O, SECTIONS and
SINGLE) are provided to divide the execution of the

enclosed code region among the members of a team.
All threads are independent and may synchronize at
the end of each work-sharing construct or at specific

points (specified by the BARRIIS:R directive). Exclu-
sive execution mode is also p)ssible through the

definition of CRITICAL and ORDERED regions. If a
thread in a team encounters a mw PARALLEL con-

struct, it creates a new team and it becomes its

master thread. OpenMP v2.0 provides the
NUN_THREADS clause to restrict the number of

threads that compose the team.
The NanosCompiler extensior_ to multilevel paral-

lelization is based on the concept of thread groups.

A group of threads is composed of a subset of the
total number of threads available in the team to run a

parallel construct. In a parallel construct, the pro-
grammer may define the number of groups and the

composition of each one. When a thread in the cur-
rent team encounters a PARALLEL construct

defining groups, the thread creates a new team and it
becomes its master thread. The new team is com-

posed of as many threads as the number of groups.
The rest of the threads are used t) support the execu-

tion of nested parallel constructs In other words, the
definition of groups establishes an allocation strategy
for the inner levels of parallelism. To define groups

of threads, the NanosCompiler supports the GROUPS
clause extension to the PARALLEL directive.

C$OMP PARALLEL GROUPS (gspec)

C;;MP END PARALLEL

Different formats for the GROUPS clause argument

gspec are allowed [10]. The s:mplest specifies the

number of groups and performs m equal partition of
the total number of threads to the groups:

gspec : ngroups

The argument ngroups specifies the number of

groups to be defined. This format assumes that work
is well balanced among groups and therefore all of
them receive the same number of threads to exploit

inner levels of parallelism. At runtime, the composi-
tion of each group is determined by equally

distributing the available threads among the groups.

gspec : ngroups, weigh2

In this case, the user specifies tt'e number of groups

(ngroups) and an integer vector (weight) indicat-

ing the relative weight of the computation that each

group has to perform. From this information and the
number of threads available in the team, the threads

are allocated to the groups at runtime. The weight
vector is allocated by the user and its values are

computed from information available within the ap-
plication itself (for instance iteration space,

computational complexity).

3 The CAPO Parallelization Support Tool

The main goal of developing parallelization sup-

port tools, is to eliminate as much of the tedious and
sometimes error-prone work that is needed for man-

ual parallelization of serial applications. With this in
mind, CAPO [13] was developed to automate the

insertion of OpenMP compiler directives with nomi-
nal user interaction. This is achieved largely by use

of the very accurate interprocedural analysis from
CAPTools [11] and also benefits from a directive
browser to allow the user to examine and refine the

directives automatically placed within the code.

CAPTo_Is provides a fully interprocedural and
value-based dependence analysis engine [14] and has

successfully been used to parallelize a number of
mesh-based applications for distributed memory ma-
chines.

3.1 Single level parallelization

The single loop level parallelism automatically

exploited in CAPO can be defined by the following
three stages (see [13] for more details of these stages

and their implementation):

1) Identification of parallel loops and parallel re-

gions - this includes a comprehensive breakdown of
the different loop types, such as serial, parallel in-

cluding reductions, and pipelines. The outermost
parallel loops are considered for parallelization so

tong as they provide sufficient granularity. Since the
dependence analysis is interprocedural, the parallel
regions can be defined as high up in the call tree as

possible. This provides an efficient placement of the
directives.

2) Optimization of parallel regions and parallel

loops - the fbrk-and-join overhead (associated with
starting a parallel region) and the synchronizing cost

are greatly lowered by reducing the number of paral-
lel regions required. This is achieved by merging

together parallel regions where there is no violation
of data usage. In addition, the synchronization be-

tween successive parallel loops is removed if it can

be proved that the loops can correctly execute asyn-
chronously (using the NOWAIT clause).

3) Code transformation and insertion of OpenMP
directives - this includes the search for and insertion

of possible THREADPRIVATE common blocks.
There is also special treatment for private variables

in non-threadprivatecommonblocks.If there is a

usage conflict then the routine is cloned and the
common block variable is added to the argument list
of the cloned routine. Finally, tt,e call graph is trav-

ersed to place OpenMP directives within the code.
This includes the identification of necessary variable

types, such as SHARED, PRIVATE, and
REDUCTION.

3.2 Extension to multilevel parallelization

Although the SGI Origin compiler does not sup-

port nested parallelism, the user can exploit

parallelism across multiple loop nests in a limited
manner. The SGI compiler acce _ts the NEST clause
on the OMP DO directive [181. The NEST clause

requires at least 2 variables as arguments to identify
indices of subsequent DO-lo)ps. The identified

loops must be perfectly nested. No code is allowed
between the identified DO statements and the corre-

sponding END DO statements. The nest clause on
the OMP DO directive informs lhe compiler that the
entire set of iterations across the identified loops can

be executed in parallel. The co npiler can then lin-
earize the execution of the loop iteration and divide

them among the available single level of threads.

CAPO has the capability to i.tentify suitable loop

nests and generate the SGI NE:_T clause. We have
extended this feature of CAI'O to support true

nested parallelism.

Our extension to OpenMP rrultilevel parallelism
is based on parallelism at different loop nests and
makes use of the extensions offered by the

NanosCompiler. Currently, we limit our approach to

only two-level loop parallelism, which is of more

practical use. The approach to automatically exploit
two-level parallelism is extended from the single
level parallelization and is illu:,trated in Figure 1.
Besides the data dependence aralysis in the begin-

ning he approach can be summarized in the

following four steps.

1) First-level loop analysis.]-his is essentially the
combination of the first two stages in the single level

parallelization where parallel lo?ps and parallel re-
gions are identified and optimized at the outermost

loop level.

2) Second-level loop analysis. This step involves
the identification of parallel lo_ps and parallel re-

gions nested inside the parall,J loops that were

identified in Step 1. These parallel loops and parallel
regions are then optimized as before but limited to

the scope defined by the first lewq.

3) Second-level directive insertion. This includes
code transformation and OpenMP directives inser-

tion for the second level. The step performed before

inserting any directives in the fiJ st-level is to ensure

a consistent picture is maintained for any variables

_" Serial Code

Data Dependence Analysis]

÷
First Level Loop Analysis]

........ -_1[- -__-_

I e ood vel oopAn.,y i] "I
I

I I'Second Level Directive Insertion -,
I

:1

............................ ----

First Level Directive Insertion]

_" Parallel Code

Figure 1: Steps in multilevel parallelization

and codes that may be changed or introduced during
the code transformation.

4) First-level directive insertion. Lastly code
transformation and OpenMP directives insertion are

performed for the outer level parallelization. All the
transformations of the last stage of the single level

parallelization are being performed, with the excep-
tion that we disallow the THREADPRIVATE

directive. Compared to single level parallelization,

the two-level parallelization process requires the
additional steps indicated in the dash box in Figure 1.

3.3 Implementation consideration

In order to maintain consistency during the code
transformations that occur during the parallelization

process we need to update data dependencies prop-
erly. Consider the example, where CAPO transforms
an array reduction into updates to a local variable.
This is Ibllowed by an update to the global array in a
CRITICAL section to work around the limitation on

reduction in OpenMP vl.x. The data dependence

graph needs to be updated to reflect the change due
to this transformation, such as associating depend-

ence edges related to the original variable to the local
variable and adding new dependences for the local

variable from the local updates to the global update.
Performing a full data dependence analysis for the

modified code block is another possibility but this
would not take advantage of the information already

obtained from the earlier dependence analysis.

When nested parallel regions are considered, the

scope of the THREADPRIVATE directive is not clear
any more, since a variable may be threadprivate for

the outer nest of parallel regions but shared for the

inner parallel regions, and the directive cannot be

boundtoaspecificnestlevel.1heOpenMPspecifi-
cationdoesnot properlyaddressthis issue.Our
solutionis todisallowtheTHRt]ADPRZVATEdirec-
tivewhennestedparallelismisconsideredandtreat
anyprivatevariablesdefinedin ;ommonblocksbya
specialtransformationasmentioledinSection3.1.

Thescopeofthesynchronizauondirectiveshasto
becarefullyfollowed.For example,theMASTER
directiveisnotallowedintheex:entofaPARALLEL

DO. This changes the way a seftware pipeline (see

[13] for further explanation) can be implemented if it
is nested inside an outer parallel loop.

CAPO detects opportunities for software-
pipelined execution of loops Wlere data dependen-

cies prevent parallelization. Sud_ loops are enclosed
by a parallel region. The iteration space of the loops

is divided up among the threads using the OMP DO
directive. The threads then explicitly synchronize
their execution with their neighbors. This is dis-

cussed in greater detail in Section 4.2 and an

example for a one-dimensional fipeline is shown in
Figure 5. The CAPO extensiors to support nested

parallelism include software pipelining. The follow-
ing example shows how CAPO exploits 2 levels of
parallelism in a loop nest where only the outer loop

is truly parallel. Assume we have a nest containing
two loops:

DO K=I,NK

DO J=2, NJ

A(J,K) = A(J,K) _ A(J-I,K)

The outer loop K is parallel and _he inner loop J can

be set up with a pipeline. After inserting directives at
the second level to set up the pipeline, we have

1 $OMP PARALLEL

DO K=I ,NK

!..point-to-point sync directive

!$OMP DO

DO J=2, NJ

A(J,K) = A(J,K) _ A(J-I,K)

The implementation of the point-to-point synchroni-
zation with directives is illustrated in Section 4.2. In

order to parallelize the K loop al the outer level, we
need to first transform the loop iato a form such that
the outer-level directives can be added. It is achieved

by explicitly calculating the K-l,)op bound for each

outer-level thread as shown in the following codes:

!$OMP PARALLEL DO GROUl_S(ngroups)

DO IT=I, omp_get_num_threads ()

CALL calc bound(I_2, l,NK,

> low, high)

$OMP PARALLEL

DO K:low, high

• .point-to-point sync directive

$OMP DO

DO J=2, NJ

A(J,K) = A(J,K) + A(J-I,K)

The function "calc_bound" calculates the K loop

bound (low, high) for a given iT (the thread num-

ber) from the original K loop limit. Only then are the

first-level directives added to the IT loop (instead of
the K loop). The method is not as elegant as one

would prefer, but it points to some of the limitations
with the nested OpenMP directives. In particular we

would not be able to set up a two-dimensional pipe-
line, since it would involve synchronization of
threads from two different nest levels. We will dis-

cuss the problem of two-dimensional pipelining in
one of our case studies in Section 4.2.

One of the contributions by the NanosCompiler to
support nested directives is the GROUPS clause,
which can be used to define the number of thread

groups to be created at the beginning of an outer-nest

parallel region. In our implementation, the GROUPS
directive containing a single shared variable

'ngroups' is generated for all the first-level paral-
lel regions. The ngroups variable is placed in a
common block and can be defined by the user at run

time. Although it would be better to generate the

GROUPS clause with a weight argument based on
different workloads of parallel regions, this is not
considered at the moment.

The nested loop:

DO K:I, NK

RHO = I/NORMK(K)

DO J=2, NJ

A(J,K) : A(J,K} + RHO* B(J,K)

END DO

END DO

will be transformed by CAPO into:

! $OMP PARALLEL GROUPS (ngroups)

!$OMP& PRIVATE (RHO, K)

! $OMP DO

DO K:I, NK

RHO : I/NORMI<(K)

! $OMP PARALLEL DO PRIVATE (J)

DO J:2, NJ

A(J,K) = A(J,K) + RHO* B(J,K)

END DO

I$OMP END PARALLEL DO

END DO

!$OMP END DO NOWAIT

! $OMP END PARALLEL

Note that for this loop the SGI NEST clause is not

applicable, since there is a statement between DO K
and DO J.

4 Case Studies

In this section we show examples for successful
and not so successful automatic multilevel paralleli-

zation. We have parallelized the three application

benchmarks(BT,SP,andLU)fr,)mtheNASParallel
Benchmarks[4] andtheARC3D[22] application
codeusingtheCAPOmultilevelparallelizationfea-
tureandexamineditseffectiveness.

In eachof ourexperimentswegeneratenested
OpenMPdirectivesandusetheNanosCompilerfor
compilationandbuildingof theexecutables.Asdis-
cussedinSections2 and3,thenestedparallelcode
containstheGROUPSclauseat theouterlevel.Ac-
cordingto theOpenMPstandard,thenumberof
executingthreadscanbespecifi,:datruntimebythe
environmentvariableOMP_NI;N_THREADS. We

introduce the environment variable

NANOS_GROUPS and modify the source code to
have the main routine check the value of this variable

and set the argument to the GROUPS clause accord-

ingly. This allows us to run the {ame executable not
only with different numbers of threads, but also with

different numbers of groups. We compare the tim-
ings for different numbers of gxoups to each other.

Note that single level parallelizat_on of the outer loop
corresponds to the case that the number of executing

threads is equal to the number of groups, i.e. there is
only one thread in each group. We compare these

timings to those resulting from compilation with the
native SGI compiler, which supports only the single

level OpenMP parallelization _nd serializes inner
parallel loops.

The timings were obtained or_ a SGI Origin 2000
with RI2000 CPUs, 400MHz clock, and 768MB

local memory per node

4.1 Successful multilevel p_railelization: the

BT and SP benchmarks

The NAS Parallel Benchmmks BT and SP are

both simulated CFD applications with a similar
structure. They use an implicit algorithm to solve the

3D compressible Navier-Stokes 4quations. The x, y,
and z dimensions are decoupled by usage of an Al-

ternating Direction Implicit (ADI) factorization
method. In BT, the resulting _ystems are block-

tridiagonal with 5x5 blocks. The systems are solved
sequentially along each dimension. SP uses a diago-
nalization method that decouples each block-

tridiagonal system into three independent scalar pen-
tadiagonal systems that are solved sequentially along
each dimension.

A study about the effects of single level

OpenMP parallelization of the NAS Parallel Bench-
marks can be found in [12]. In our experiments we
started out with the same serial implementation of
the codes that was the basis for the single level

OpenMP implementation as described in [12]. We
ran class A (64x64x64 grid points), B (102x102x102

grid points), and C (162x162x 162 grid points) for

BT Class A (Problem size 64x64x64)

120

100

O 80

60

'_ 40

20

0

8 16 32 64 128

Number of threads

DSGIOpenMP

I OSGI OpenMP + NEST
I

i ONanos Outer

LONanos Nested

-8

C

F--

SP Class A (Problem size 64x64x64)

8 16 32 64 128

Number of threads

OSGr OpenMP

OSGI OponMP + NEST

INanos Outer

I"mNanos Nesle_

Figure 2: Timing results for class A benchmarks.

the BT and SP benchmarks. As an example we show
timings for problem class A for both benchmarks in

Figure 2.

The programs compiled with the SGI OpenMP
compiler scale reasonably well up to 64 threads, but

do not show any further speed-up if more threads are
being used. For a small number of threads (up to 64),
the outer level parallel code generated by the Nanos

Compiler runs somewhat slower than the code gen-

erated by the SGI compiler, but its relative
performance improves with increasing number of

threads. When increasing from 64 to 128 threads, the
multilevel parallel code still shows a speed-up, pro-

vided the number of groups is chosen in an optimal
way. We observed a speed-up of up to 85% for 128

threads. In Figure 3 we show the speed-up resulting
from nested parallelization for three problem classes
of the SP and BT benchmarks. We denote by

* SGI OpenMP: the time for outer loop

parallelization using just the native SGI
compiler,

• SGI OpenMP+NEST: The time for outer loop

parallelization using the ¢,GI NEST clause if
applicable.

• Nanos Outer: the tim,: for outer loop

parallelization using the N mosCompiler,

• Nanos Nested: the minimal time for nested

parallelization using the NmosCompiler.

The timings show that the SC I NEST clause is of
limited benefit. It improves the performance of the

BT benchmark slightly, but it d:)es not help the SP
benchmark. The time consumin_ routines in the two
benchmarks are the three solvers in x, y, and z-

direction and the computation ot the right hand side.

In case of BT, CAPO paralleli::ed 28 loops, l l of
which were suitable for the NEST clause. This in-

cludes the major loops in the three solver routines.
The time consuming loops in tl'e calculation of the

right hand side are not suitable f)r the NEST clause,

since they contain statements between the DO state-
ments. The situation is a lot worse for the SP

benchmark. CAPO parallelized !;1 loops. The NEST

clause could be generated for ' ' of them. The "----I I till _

main loops in the solver routines were not suitable
for the NEST clause, because the inner loops are

enclosed in subroutine calls. The computation of the

right hand side contains nested loops that are not
tightly nested, just like in the ca_,e of BT. The NEST
clause could only be applied to loops with a very low

workload. In this case, distributi lg the work in mul-

tiple dimensions leads to a slight decrease of
performance for a small number of threads.Neither
the occurrence of code between the DO statements

nor inner loops enclosed within subroutine calls
poses an obstacle to nested parallel regions supported

by the NanosCompiler. For the BT benchmark
CAPO parallelized 13 of the 2_; parallel loops em-
ploying nested parallel regions and the GROUPS
clause. For the SP benchmark CAPO identified 17 of

the 31 parallel 31 loops, as suita')le for nested paral-
lelism. In both benchmarks the most time consuming

loops are parallelized in two dimensions. All of the

nested parallel loops are at least triple nested. The
structure of the loops is such tha: the two outer most
loops can be parallelized. The inner parallel loops
enclose one or more inner loop:; and contain a rea-

sonably large amount of computational work,

The reason that multilevel parallelism has a positive

effect on the performance of these loops is mainly
due to the fact that load balancing between the

threads is improved. For class A, for example, the
number of iterations is 62. If only the outer loop is

parallelized, using more than 62 threads will not im-

prove the performance any further. In the case of 64
threads, 2 of them will be idling. If, however, the

second loop level is also parallelized, all 64 threads
can be put to use. Our experiments show that by

choosing the number of groups too small, the per-
tbrmance will actually decrease. Setting the number

of groups to 1 effectively moves the parallelism
completely to the inner loop, which will in most
cases be less efficient than parallelizing the outer

loop.
In Table 1 we show the maximal and minimal

2

18

E _6
_ 14

_ 08

_06

_'04

0

BT Speed-up with Nested Paralleli=aticn

8 16 32 64 128

Number of Threads

IB Class AI

I II Class 81

IO Class _SI

SP Speed-up with Nested Parallellzation

8 1E 32 51 12_

Numbe_ of Threads

I OISlass Al

IIIIClass 81 i

Im _iass LI

Figure 3: Speed-up due to nested parallelism.

number of iterations (for class A) of the inner paral-

lel loop that a thread has to execute, depending on
the number of groups.

Max # Iters Min # Iters# Groups
64 62

32 62 31

16 64 45

8 64 49

4 64 45

Table 1: Thread workload for the class A

problems BT and SP.

To give a flavor of how the performance of the

multilevel parallel code depend_ on the grouping of
threads we show timings for the BT benchmark on

64 threads and varying number of groups in Figure 4.
The timings indicate that good _:riteria to choose the

number of groups are:

• Efficient granularity of the parallelism, i.e., the
number of groups has to he sufficiently small.

In our experiments we observe that the number
of groups should not be smaller than the num-

ber of threads within a groap.

• The number of groups ha,._ to be large enough
to ensure a good balancing of work among the
threads.

BT Benchmark with 64 l"}lraade

Class w Cr_ssA Class _ Class C

BenchmarkL'la_s

Figure 4: Timings of BT with varying number
of thread groups.

4.2 The need for OpenMl' extensions: the
LU benchmark

The LU application benchmark is a simulated
CFD application that uses the symmetric successive
over-relaxation (SSOR) methoc to solve a seven

band block-diagonal system re_ulting from finite-

difference discretization of the 3D compressible Na-
vier-Stokes equations by splittinl, _ it into block lower

and block upper triangular systems.

As starting point for our tests we choose the pipe-
lined implementation of the parallel SSOR

algorithm, as described in [12]. the example below
shows the loop structure of the lower-triangular

solver in SSOR. The lower-triangular and diagonal
systems are formed in routine J]\CLD and solved in

routine BLTS. The index K corresponds to the third
coordinate direction.

DO K = KST, KEND

CALL JACLD (K)

CALL BLTS (K)

END DO

SUBROUTINE BLTS

DO J = JST, JEND

Loop_Body (J, K)

END DO

RETURN

END

All of the loops involved carry data dependencies
that prevent straightforward parallelization. There is,

however, the possibility to exploit a certain level of
parallelism by using software pipelining as described
in Section 3.3. To set up a pipeline for the outer loop,
thread 0 starts to work on its first chunk of data in K

direction. Once thread 0 finishes, thread 1 can start

working on its chunk for the same K and, in the
meantime, thread 0 moves on to the K+ 1. The direc-

tives generated by CAPO to implement the pipeline
for the outer loop are shown in Figure 5.

The K loop is placed inside a parallel region. Two
OpenMP library functions are called to obtain the
current thread identifier (iam) and the total number

of threads (numt). The shared array isync is used

to indicate the availability of data from neighboring
threads. Together with the FLUSH directive in a
WHILE loop it is used to set up the point-to-point

synchronization between threads. The first WHILE
ensures that thread iam will not start with its slice of

the J loop before the previous thread has updated its
data. The second WHILE is used to signal data avail-
ability to the next thread.

The NanosCompiler team is currently defining

and implementing OpenMP extensions to easily ex-
press the precedence relations that originate
pipelined computations. These extensions are also

valid in the scope of nested parallelism. They are
based on two components:

• The ability to name work-sharing constructs

(and therefore reference any piece of work
coming out of it).

• The ability to specify predecessor and succes-
sor relationships between named work-sharing
constructs (PRED and SUCC clauses).

This avoids the manual transformation of the loop

to access data slices and manual insertion of syn-
chronization calls. From the new directives and

clauses, the compiler automatically builds synchro-

nization data structures and insert synchronization

actions following the predecessor and successor rela-

tionshipsdefined[8].Figure6 showsthepipelined
loopfromFigure5whenusingtlenewdirectives.

! $OMP PARALLEL PRIVATE (K, iam, numt)

iam : omp_get_thread_:lum()

numt = omp_get_num_th 7eads ()

isync (iam) = 0

! $OMP BARRIER

DO K = KST, KEND

CALL JACLD (K)

CALL BLTS (K)

END DO

I$OMP END PARALLEL

SUBROUTINE BLTS (K)

if" (iam .gt. 0 .and.

iam .it. numt) then

do while(isync(iam-k) .eq. 0)

! $OMP FLUSH (isync)

end do

isync (iam-l) = 0

! $OMP FLUSH (i sync)

end i f

,$OMP DO
DO J = JST, JEND

Loop_Body (u ,_j

END DO

!$OMP END DO nowait

if (iam .it. numt) then

do while (isync(iam) .eq. i)

! $OMP FLUSH (isync)

end do

isync (iam) = 1

! $OMP FLUSH (isync)

endif

RETURN

END

Figure 5: The one-dimensior_al parallel pipe-
line implemented in LU.

! $OMP PARALLEL PRIVATE (K, iam, numt)

DO K = KST, KEND

CALL JACLD (K)

CALL BLTS (K)

END DO

!$OMP END PARALLEL

SUBROUTINE BLTS (K)

!$O_'DO NAM_ (inner_loop)

DO J = JST, JEND

!$OMP PRED (inner_loop, j-l)

Loop Body (J,K)

!$OMP SUCC (inner_loop, j_l)

END DO

! $OMP END DO nowait

RETURN

END

Figure 6: One-dimensional pipeline using di-
rectives

In Figure 7 we show the timings fi)r LU benchmark

comparing the one-level pipelined implementation
using the synchronization mechar ism from Figure 3,

the one-level pipelined implemmtation using the

new NanosCompiler directives, and a 2-dimensional

pipelined implementation based on MPI. The com-
piler directives based implementation shows about

the same performance as the hand-coded synchroni-
zation.

20

0

4

LU Class A Timings

8 16 32 64

Number of Threads

OExplicit Sync t
I1_PRED/SUCC

IIIMPl

Figure 7: Timings for different implementations
of LU

The performance of the pipelined parallel imple-
mentation of the LU benchmark is discussed in [12].

The timings in Figure 7 show that the directive based
implementation does not scale as well as a message

passing implementation of the same algorithm. The
cost of pipelining results mainly from wait during

startup and finishing. The message-passing version
employs a 2 dimensional pipeline where the wait
cost can be greatly reduced. The use of nested

OpenMP directives offers the potential to achieve
similar scalability to the message passing implemen-
tation.

There is, however, a problem in setting up a direc-

tive-based two-dimensional pipeline. The new
directives allow synchronization of threads within
one team and synchronization between different
teams.

The structure of the Loop_Body depicted in Fig-
ure 5 looks like:

DO I = ILOW, IHIGH

DO M = i, 5

TV(M, I, J) = V(M, I,J,K-I)

+ V(M, I,J-I,K)

+ V(M, I-I,J,K)

END DO

DO M = i, 5

V(M,I,J,K): TV(M, I, J)

END DO

END DO

If both J-and I-loop are to be parallelized employing
pipelines, a thread would need to be able to synchro-

nize with its neighbor in the J- and I-directions on
different nesting levels. Parallelizing the I-loop with

OpenMP directives introduces an inner parallel re-

gion,asshownbelow(seealsothediscussioninSec-
tion3.3)

!$OMP PARALLEL

synchroni za t i on l

' $OMP DO

DO JT = ...

'$OMP PARALLEL _-

DO J = JLOW, JHIGH

Synchroni za ti on2

! $OMP DO

DO I : ILOW, IHIGH

END DO

1$OMP END DO NOWAIT

Synchroni z a ci on2

END DO

! $OMP END PARALLEL (--

END DO

!$OMP END DO NOWAIT

syn chron i za t i on i

The end of the inner paralle region forces the
threads to join and destroys the multilevel pipeline

mechanism. In order to set up a 2-dimensiona! pipe-
line, two possibilities should be taken into account.

The first one is removing the implicit barrier at the
end of the inner parallel region. Such a NOWAIT

clause is not available in OpemMP but could be eas-
ily implemented in the corrpiler. The second
alternative is the use of nested Ot_ DO directives

within the same parallel region. This is an extension
also proposed to OpenMP and a,,ailable in the native

SGI compiler. This simply uses one level of parallel-
ism but performs a two-dimens onal distribution of

work. The loop structure of m_ny time consuming
loops in the LU benchmark is ,.uitable for the SGI

NEST clause, but the SGI compiler does not provide
extensions for explicit thread synchronization. As we
have seen in Section 4.1, the re_,trictions to applica-

tion of the NEST clause greatl 3 limit its usage for
many time consuming loops. It _ ould be desirable to
have these restrictions removed Code between the

DO statements could be handled by having only part
of the threads executing these sta ements. In case that
the inner loop is enclosed in a subroutine call, more

complicated techniques, invohing procedure in-

lining are necessary.

4.3 Unsuitable loop structure in ARC3D

ARC3D uses an implicit scheme to solve Euler
and Navier-Stokes equations in i three-dimensional

(3D) rectilinear grid. The main component is an ADI
solver, which results from the approximate factoriza-

tion of finite difference equ:,tions. The actual
implementation of the ADI solver (subroutine

STEPF3D) in the serial ARC3D is illustrated in Fig-
ure 6. It is very similar to the SP benchmark.

I BC
I

I RHS
I

FiLTER3D
I

TKINV
I

XI solver
I

NPINV

--[Boundary Condition

--_ Explicit Right-Hand-Side

--

I

J

Artificial Dissipation Terms

(X) For each L:

form LHS for (J,K) plane
VPENTA3 -- solve first 3
VPENTA -- solve 4 & 5

Isolver 1_ [(Y) For each L:
form LHS for (K,J) planeETA

I i_ VPENTA3 -- solve first 3VPENTA -- solve 4 & 5NPINV

I

ZETA solver< ! (Z) ForeachK:

I TK form LHS for (L,J) planeVPENTA3 -- solve first 3

update solution I J VPENTA -- solve 4 & 5

Figure 6: The schematic flowchart of the ADI
solver in ARC3D.

For each time step, the solver first sets up bound-
ary conditions (BC), forms the explicit right-hand-

side (RHS) with artificial dissipation terms
(FILTER3D), and then sweeps through three direc-
tions (X, Y and Z) to update the 5-element fields,

separately. Each sweep consists of forming and solv-
ing a series of scalar pentadiagonal systems in a two-

dimensional plane one at a time. Two-dimensional

arrays are created from the 3D fields and are passed
into the pentadiagonal solvers (VPENTA3 tbr the
first 3 elements and VPENTA for the 4 and 5th ele-

ments, both originally written for vector machines),
which perform Gaussian eliminations. The solutions

are then copied back to the three-dimensional resid-

ual fields. Between sweeps there are routines
(TKINV. NPINV and TK) to calculate and solve

small, local 5x5 eigensystems. Finally the solution is
updated for the current time step.

We ran ARC3D for two different problem sizes.
In both cases the performance dropped by 10% to

70% when the number of groups was smaller than
the number of threads, i.e. when multilevel parallel-

ism was used. Example timings for both problem
sizes and 64 threads are given in Figure 7. The tim-

ings for outer level parallelism are given in Figure 8.

Eventhoughthe time consumingsolverin
ARC3Dis similartotheonein theSPbenchmark,
ourapproachto automaticmult:levelparallelization
wasnotsuccessful.ForARC3DCAPOidentified58
parallelloops,35of whichweresuitablefornested
parallelization.19ofthe35nestedparallelloopshad
verylittleworkin theinnerpar:llelloopandineffi-
cientmemoryaccess.Anexampleisshownbelow.

! $OMP PARALLEL DO GROUPS I ngroups)

! $OMP& PRIVATE (AR, BR, CR0 DR, ER)

DO K : KLOW, KUP

!$OMP PARALLEL DO

DO L : 2, LM

DO J = 2, JM

AR(L,J) = AR(L,J)

BR(L,J) = BR(L,J)

CR(L,J) = CR(L,J}

DR(L,J) : DR(L,J)

ER(L,J) = ER(L,J}

CR(L,J) = CR(L,J)

END DO

END DO

END DO

V(J,K,L)

V(J,K,L)

V(J,K,L)

V(J,K,L)

V(J,K,L)

i.

Parallelizing the L loop increase_; the execution time
of the loop considerably due tc a high number of
cache invalidations. The occurrence of many such

loops in the original ARC3D code nullifies the bene-
fits of a better load balance and we see no speed-up

for multilevel parallelism.

The NEST clause could be applied to the same 35

loops that were suitable for ne{ted parallelization.
However, just like the nested l:arallel regions, the

NEST clause did not improve the performance of the
code.

6O

ARC3D Nested Parallelism Timings

64x54x64 1_xl _4_194

Problem size

Figure 7: Timings of AR('3D with varying
number of thread groups for a given total of 64
threads.

The example of ARC3D shovrs that parallelizing
all loops in an application indis,:riminately on two

levels with the same name number of groups and the
same weight for each group may actually increase

ARC3D Timings for Probelm size 64x64x64

18

16

_) 12

._=" 8

4

2

0

4 8 15 32 64 128

Number of thread=

Ln Nanos ONe'

350

300

250

g 2o0
o

¢ 150

50

0

ARC3D Timings for Problem size

194x194x194

OSGI OpenMP I

MSGI OpenMP+NEST

I Narlos Outer

4 8 16 32 64 128

NunYoer of threads

Figure 8: Timings from the outer level paral-
lelization of ARC3D.

the execution time. At the least we will need to ex-

tend the CAPO directives browser to allow the user

inspection of all multilevel parallel loops and possi-
bly perform code transformations or disable nested
directives.

5 Related work

There are a number of commercial and research

parallelizing compilers and tools that have been de-

veloped over the years. Some of the more notable
ones include Superb [24], Polaris [6], Suif [24]
KAI's toolkit [15], VAST/Parallel [21], and FOR-

Gexplorer [1]

Regarding OpenMP directives, most current

commercial and research compilers mainly support
the exploitation of a single level of parallelism and

special cases of nested parallelism (e.g. double per-
fectly nested loops as in the SGI MIPSpro compiler).

The KAI/Intel compiler offers, through a set of ex-

tensions to OpenMP, work queues and an interface
for inserting application tasks before execution
(WorkQueue proposal [23]). The KAIllntel proposal

mainly targets dynamic work generation schemes

(recursions and loops with unknown loop bounds).
At the research level, the Illinois--Intel Multithread-

ing library [7] provides a similar approach based on

10

workqueues.In bothcases,th,:reis noexplicit(at
theuserorcompilerlevel)contr_1overtheallocation
of threadssotheydonotsuppotthelogicalcluster-
ingof threadsin themultilevelstructure,whichwe
thinkis necessaryto allowgo_dworkdistribution
anddatalocalityexploitation.

Compaqrecentlyannouncedthesupportof nested
parallelregionbyitsFortrancompilerforTru64sys-
tems[3].TheOmnicompiler[19],whichispartof
theRealWorldComputingPloject,alsosupports
nestedparallelismthroughOpenMPdirectives.

Therearea numberof papersreportingexperi-
ences in combiningmulliple programming
paradigms(suchasMPIand_)penMP)to exploit
multiplelevelsof parallelism.I-owever,thereisnot
muchexperiencein theparalMizationof applica-
tionswithmultiplelevelsofpar_llelismsimplyusing
OpenMP.Implementationof nestedparallelismby
meansof controllingtheallocalionof processorsto
tasksin a single-levelparallelismenvironmentis
discussedin [5].Theauthorssh,)wtheimprovement
duetonestedparallelization.

OtherexperiencesusingnestedOpenMPdirec-
tiveswiththeNanosCompilermereportedin [2]. In
theexamplesdiscussedthere,thedirectiveshavenot
beenautomaticallygenerated.

6 Project Status and Future Plans

We have extended the CAPO automatic paralleli-

zation support tool to automatically generate nested
OpenMP directives. We used th," NanosCompiler to

evaluate the efficiency of our approach. We con-
ducted several case studies which, showed that:

• Nested parallelization was useful to improve

load balancing.

• Nested parallelization can be counter produc-
tive when applied without considering

workload distribution and memory access
within the loops.

• Extensions to the OpenMP standard are needed

to implement nested parallel pipelines.
We are planning to enhance the CAPO directives
browser to allow the user to view loops, which are

candidates for nested parallelization. Nested paral-
lelization may then be turned on selectively and

necessary loop transformations can be performed.
We are also considering the automatic determination

of an appropriate number of greups and the assign-

ment of different weights to th,: groups. Currently
CAPO is also being extended to support hybrid par-

allelism which combines coarse-grained
parallelization based on message passing and fine-

grained parallelization based on directives.

We plan to conduct further case studies to com-

pare the performance of parallelization based on
nested OpenMP directives with hybrid and pure mes-

sage passing parallelism.

Acknowledgments

The authors would like to thank Rob Van der

Wijngaart and Michael Frumkin of NAS and Jesfis

Labarta from CEPBA for reviewing the paper and
the suggestions they made for improving it. The au-
thors also wish to thank the CAPTools team (C.

Ierotheou, S. Johnson, P. Leggett, and others) at the

University of Greenwich for their support on CAP-

Tools. This work was supported by NASA contracts
NAS 2-14303 and DTTS59-99-D-00437/A61812D

with Computer Sciences Corporation and by the
Spanish Ministry of Science and Technology under
contract CICYT 98-511.

References

[1] Applied Parallel Research Inc., "FORGE Ex-

plorer," http://www.apri.com/.
[2] E. Ayguade, X. Martorell, J. Labarta, M. Gon-

zalez and N. Navarro, "Exploiting Multiple

Levels of Parallelism in OpenMP: A Case
Study", Proc. Of the 1999 International Confer-

ence on Parallel Processing, Ajzu, Japan,
September 1999.

[3] Compaq Fortran Release Notes for Compaq
Tru64 UNIX Systems April 2001,
http://www5.Compaq.com/fi)rtran/docs/unix-
um/relno.htm

[4] D. Bailey, T. Harris, W. Saphir, R. Van der

Wijngaart, A. Woo, and M. Yarrow, "The NAS
Parallel Benchmarks 2.0," RNR-95-020, NASA

Ames Research Center. 1995. NPB2.3,

http:Hwww.nas.nasa.__ov/So ftware/NPB/.
[5] R. Blikberg and T. Sorevik. "Nested Parallel-

ism: Allocation of Processors to Tasks and

OpenMP Implementation". 2"a European Work-

shop on OpenMP. Edinburgh. September 2000.
Blume W., Eigenmann R., Faigin K., Grout J.,

Lee J., Lawrence T., Hoeflinger J., Padua D.,
Pack Y., Petersen P., Pottenger B., Rauchwerger

L., Tu P., Weatherford S. "Restructuring Pro-
grams fi_r High-Speed Computers with Polaris,
1996 ICPP Workshop on Challenges for Paral-

lel Processing", pages 149-162, August 1996.
M. Girkar, M. R. Haghighat, P. Grey, H. Saito,

N. Stavrakos and C.D. Polychronopoulos. Illi-
nois-Intel Multithreading Library:

Multithreading Support for Intel. Architecture--
based Multiprocessor Systems. Intel Technology

Journal, QI issue, February 1998.
M. Gonzalez, E. Ayguad6, X. Martorell and J.

Labarta. Defining and Supporting Pipelined
Executions in OpenMP. 2"d International Work-

shop on OpenMP Applications and Tools. July
2001.

M. Gonzalez, E. Ayguad6, X. Martorell, J. La-

barta, N. Navarro and J. Oliver. NanosCompiler:
Supporting Flexible Multilevel Parallelism in

[61

[71

[8]

[91

11

OpenMP.Concurrency:Practiceand Experi-
ence.SpecialissueonOpenMP.vol.12,no.12.
pp.1205-1218.October2000.

[10]M.Gonzalez,J.Oliver,X.Martorell,E.Aygua-
d6, J. Labarta ant N. Navarro.
"OpenMPExtensionstbr Thread Groups and
Their Run-time Support" 13 th International

Workshop on Languages and Compilers for

Parallel Computing (LCP(_'2000), New York

(USA). pp. 317-331. August, 2000.
[II]C.S. Ierotheou, S.P. Johnson, M. Cross, and P.

Leggett, "Computer Aided Parallelisation Tools
(CAPTools) - Conceptual Overview and Per-
formance on the Paralleli:,ation of Structured

Mesh Codes," Parallel C_,mputing, 22 (1996)
163-195. http :l/captools.._re ac. uk/

[12] H. Jin, M. Frumkin, and J. Yan, "The OpenMP
Implementations of NAS]'arallel Benchmarks

and Its Performance", NAS Technical Report
NAS-99-011, 1999.

[13]H. Jin, M. Frumkin and !. Yan. "Automatic
Generation of OpenMP Directives and Its Ap-

plication to Computational Fluid Dynamics
Codes," in Proceedings o: Third International

Symposium on High Perfi,rmance Computing
(ISHPC2000), Tokyo, Japan, October 16-18,
2000.

[14] S.P. Johnson, M. Cross and M. Everett, "Exploi-
tation of Symbolic Information In Interprocedural

Dependence Analysis," Parallel Computing, 22,
197-226, 1996.

[15] Kuck and Associates, Inc., "Parallel Perform-

ance of Standard Code_, on the Compaq
Professional Workstation 8000: Experiences
with Visual KAP and the FAP/Pro Toolset un-

der Windows NT, " Champaign, IL,
Assure/Guide Reference M_nual," 1997.

[16] Message Passing Interface, http://www-
unix.mcs.anl.aov/

[17] X. Martorell, E. Ayguad6, N. Navarro, J. Corba-
lan, M. Gonzalez and J. Labarta.

"Thread Fork/join Techniques for Multi-level
Parallelism Exploitation in NUMA Multiproces-
sors". 13m International Conference on

Supercomputing (ICS'99), Rhodes (Greece). pp.
294-301. June 1999.

[18] MIPSPro 7 Fortran 90 Commands and Direc-
tives Reference Manual 007-3696-03

[19]Omni: RCWP OpenMP Compiler Project,

http://www.hpcc.j p/omni
[20] OpenMP Fortran/C Application Program Inter-

face, http://www._penmp.or_/.
[2 i] Pacific-Sierra Research, "VAST/Parallel Auto-

matic Parallelizer," http://uwu..psrv.ct)m/.
[221 T.H. Pulliam, "Solution Methods In Computa-

tional Fluid Dynamics," Notes for the yon
Kdrm6n Institute For Fluid Dynamics Lecture

Series, Rhode-St-Genese, Belgium, 1986.

[23] S. Shah, G. Haab, P. Petersen and J. Throop.
Flexible Control Structures for Parallelism in

OpenMP. In 1st European Workshop on
OpenMP, Lund (Sweden), September 1999.

[24] Wilson R.P, French R.S,Wilson C.S, Amaras-

inghe S.P, Anderson J.M, Tjiang S.W.K, Liao S,
Tseng C., Hall M.W, Lain M. and Hennessy J.,
"SUIF: An Infrastructure for Research on Par-

allelizing and Optimizing Compilers" Computer

Systems Laboratory, Stanford University, Stan-
ford, CA.

[25] Zima H P, Bast H -J, and Gerndt H M,

"SUPERB- A Tool for Semi-Automatic
MIMD/SIMD Parallelisation" Parallel Comput-

ing. 6, 1988.

12

